水稲株位置

倒伏リスク診断(2017年)

Posted on Updated on

今年は7月30日に出穂期を迎えましたので、出穂14日前の7月16日のモニタリングデータを利用して、倒伏しやすいコシヒカリの倒伏リスク診断を行ってみました。

倒伏リスク診断の計算方法はこちらに掲載しています。

 

倒伏リスク診断マップ(2017年)

「7月16日(出穂14日前)のDSM-5月18日(代掻き直後)のDSM」から計算した倒伏リスク診断マップです。橙~赤色は倒伏リスクの高い株で、青色はリスクが低い株になります。今年は圃場の西側(特に南西側)で倒伏リスクが高い結果となっています。昨年は圃場の北側で倒伏リスクが高い結果となり、実際に倒伏してしまいました。草丈のむらが出ないように、圃場の均平化など努力しているのですが、均一に栽培する難しさを実感します。

 

2017年7月16日空撮のオルソ画像


欠株率

Posted on Updated on

田植えから1ヶ月が経過すると、苗も順調に生長し上空からのモニタリングでもはっきりと確認できます(この頃の草丈は約35cm)。

昨年からはじめた「水稲株位置の抽出」を今年も行いました。抽出方法については、昨年の記事をご参照下さい。

水稲株位置の抽出に使用した画像は、移植してから28日後の近赤外オルソ画像になります。

 

水稲株位置抽出(2017年6月18日撮影)

オルソ画像と抽出した水稲株位置(オレンジ点)を重畳した画像になります。両者の画像を比較してもわかるように、おおよその水稲株の位置抽出ができているのではないかと思います。

 

圃場全体の水稲株位置(2017年) 背景:近赤外画像(Canon S110近赤外改造)

今年は株間21cmに設定して移植を行った結果、圃場内の株数は約4.7万株となりました。ちなみに、昨年は株間18cm設定で約5.1万株となっております。

 

次に、水稲株をメッシュごとにまとめて可視化した結果です。

 

単位面積あたりの株数(株/㎡) 背景:可視画像(Richo GR)

圃場の西側は田植機の移植方向が異なる部分にあたるため、若干株数が少なくなっています。圃場内全体では単位面積あたり14.2(株/㎡)【坪あたり46.9株】となりました(昨年の結果はこちらから)。

また、株間21cmの標準的な単位面積あたりの株数は15.9(株/㎡)となります。そこで、この値を基準としてメッシュごとの欠株率を算出してみました。

 

欠株率(2017年) 背景:近赤外画像(Canon S110近赤外改造)

その結果、メッシュ全体の欠株率は7.9%となりました。欠株率が最も高い値を示したメッシュは、トラクタの出入り部分にあたります。それ以外のメッシュでは、だいたい数%の欠株率で収まっています。

 


倒伏リスク診断

Posted on Updated on

コシヒカリは稲穂が垂れやすく、倒伏しやすい品種になります。そもそも、倒伏は稲穂が地表面に着くほど倒れる状態を指します。倒伏して、稲穂が地表面の水に着いてしまうと,収量の低下や機械による収穫困難、食味の低下などの問題が生じ,生産者にとっていいことはありません。

そのため、倒伏のリスクがある箇所については,事前に倒伏軽減剤の散布や倒伏前に刈取りを行うなどの対応が必要となってきます。

コシヒカリは、草丈が幼穂形成期で70cmを越える場合,または出穂13~14日前で84cm以上であると,倒伏のリスクが高まるとされています(水稲栽培管理情報:JA金沢市版)。ただし、この数値については、埼玉県でも用いることができるかは検討の余地はあります。

下の倒伏リスク診断マップは、「出穂14日前のDSM-代掻き直後のDSM」から計算した図です。今年は、水稲株位置を求めたので株ごとに倒伏リスク診断を行いました(全部で約5.1万株)。赤色は倒伏リスクの高い株で、青色はリスクが低い株になります。

 

2016倒伏リスク診断

倒伏リスク診断マップ

20160829

冠水後に撮影したオルソ画像

(稲の色が若干変化しているところが倒伏している箇所)

スライドバーを動すと、倒伏リスクが高い場所と実際に倒伏してしまった場所の対応が確認できます。

今年の稲刈りは9月10~11日を予定しております。まだ、1週間ちょっとの時間があります。それまでの間に、さらに倒伏が進まないことを祈るばかりです。


収量予測

Posted on Updated on

収穫まで約1ヶ月を切りました。

今回は2つの手法で2016年度の収量を予測してみたいと思います。

どのぐらい一致するかは未知数なので、楽しみです。

 

まず、株数・茎数から収量を予測する方法です。

【使用するデータ】

水稲株の位置から計算したメッシュごとの株数

茎数 : 週一モニタリングで実施中のデータ

・1穂当たりの玄米重量(g/穂) : 昨年の収穫時に計測したデータ

 

収量(kg) = メッシュごとの株数 × 茎数 × 1穂当たりの玄米重量

茎数 = 20.3 本(2016年8月4時点)

1穂当たりの玄米重量 = 1.50 g(水分15 %)

問題点は全株を同じ分げつとしている点で、生育のばらつきを考慮していないところです。

 

地上観測予測

試験サイト全体の玄米収量予測(地上観測) : 1520 kg

 

次に、ドローンモニタリングで計測しているNDVIを用いた収量予測方法です。

【使用するデータ】

・ドローン計測によるNDVI(2016年8月4日撮影)

・単位面積あたりの収量とNDVIの相関式(昨年のデータ)

収量(kg) = 昨年度得た係数 × メッシュごとのNDVI

 

ortho(20160804)

8月4日撮影のオルソ画像

NDVI(20160804)

8月4日撮影のNDVI画像(暖色:植生活性が高い、寒色:植生活性が低い)

ドローン予測

試験サイト全体の玄米収量予測 (ドローン): 1570 kg

 

答えは1ヶ月後です。

データは速報値なので、今後の詳細な解析で変更することもあります。


中干し&水稲株カウント

Posted on Updated on

田植えから34日が過ぎ、茎数が平均22本(圃場内8箇所80サンプル)になったので、今日から10日程度中干しを実施します。

中干しは、無効分げつを抑えて、土壌内部に酸素を供給して根を健全にします。特に無効分げつを抑えることで、収量アップやお米の品質を向上させることができます。

【水稲株数】前回、紹介した水稲株位置をメッシュごとにまとめてみました。

2016株数

単位面積あたりの株数(株/㎡)

 
圃場内全体では単位面積あたり16.8(株/㎡)【坪あたり55株】となりました。今年は田植機の設定を株間18cm【坪あたり60株】で行いましたが、ドローンによる計測では若干少ない結果となりました。途中でジャムってしまったことも影響しているかもしれません。また、同じように田植機を操作していてもばらつきがあることが、メッシュごとに計算することでわかってきました。


水稲株の位置抽出

Posted on Updated on

今日は週一でモニタリングを行っている画像データから水稲株の位置抽出について紹介します。

稲が生長すると、田植機で移植できなかった欠損場所が上空からのモニタリングではっきり分かるようになります。畦畔から内側の欠損場所を特定するのは,ちょっと難しいです。

今回は移植してから28日後の近赤外オルソ画像を使用しました。

近赤外の波長帯は、植生からの反射率が高くなる特性があります。下の写真は地上から撮影した近赤外画像です。植生がある場所は白くなります。

私はいかに安く、価値の高いモニタリングができるかということを基本コンセプにしているので、近赤外カメラは中古のコンデジを2~3万円で購入して改造しました。

まぁ、墜落して壊れても諦めがつく値段です。

近赤外地上

地上から撮影した近赤外画像(植生がある場所は白くなります)

 

S110改造

改造した近赤外カメラ(Canon S110)

 

今回試した解析方法

先行研究では、テンプレートマッチングを用いて移植水稲の株位置を推定する研究例があります(リンク先)。今回は、あまり難しい処理をするのではなく、GISの機能を使って位置を抽出してみました。

1)近赤外オルソ画像にローパスフィルタ処理を施して、ノイズを除去する。

処理1

 

2)ノイズ除去した近赤外オルソ画像にフォーカル統計(指定した近傍内の統計情報を計算)を行う。

処理2

 

3)ラスタ-ベクタ変換で、水稲株をポリゴン化する。それ以外のポリゴンデータを削除する.

処理3

 

4)ポリゴンの重心点を求めて、ポイントデータに変換する.

処理4

 

その結果、圃場内の株数は約5.1万株と求めることができました.

 

水稲株位置抽出