熱赤外

NDVI & 温度観測

Posted on

昨年(8月6~7日)は試験サイトの圃場内の温度環境を把握するために、熱赤外カメラによる温度観測を行いました。今年も昨年同様の観測を千葉大学近藤研究室の濱さんと共同で、8月5日~6日(生育ステージは乳熟期)にかけてNDVI & 温度観測を実施しました。天気予報では曇一時雨となっており、観測は難しいかなぁと思っていましたが、2日間とも雨は降らず、無事に観測することができました。

昨年の観測結果からNDVIが高い箇所では群落表面温度の低温域となり、反対にNDVIが低い箇所では高温域となることがわかりました。また、群落表面温度のばらつきは玄米重量にも影響を及ぼすことが昨年の結果から示されています。

今年は出穂期から曇天が続き、日平均気温が27℃を超えた日はわずか3日(最大で28.2℃)です(8月6日時点)。そのため、2017年度産「どろーん米」は高温登熟障害の影響が小さいかもしれません。

【観測項目】
1)同一圃場内の生育状況が異なる2箇所で温湿度・CO2観測
・出穂期のNDVI分布を基に、NDVIが高い(草丈が高い)・NDVIが低い(草丈が低い)場所の2箇所に、観測機器を設置。


観測機器(温湿度・CO2

昨年の観測機器より耐久性等を増した装置を濱さんが作成しました。装置は塩ビ管(100mm)をアルミ箔で覆い、太陽光パネル+モバイルバッテリを電源にした通風機能を備えています。

 

2)熱赤外カメラによる群落表面温度観測
・昨年と同様に熱赤外カメラをドローンに搭載し、上空100mから2時間ごと(日の出~日の入りまで)に垂直撮影(地上分解能約30cm)。

上空100mからの温度観測画像(2017年8月5日12時撮影)

 

3)NDVI観測
・Yubaflexをドローンに搭載し、上空50mから2時間ごと(日の出~日の入りまで)に垂直撮影(地上分解能約2cm)。

SOLO(3DR社)

近未来的なデザインに仕上がっているSOLO(濱さん持参)にNDVI計測を担当してもらいました。SOLOは機底に付属のカメラが付いていないので、好きなカメラを搭載することができます。なお、ドローン業界の大きなシェアを占めているPhantomシリーズの場合は空撮用カメラが標準装備されているため、水稲モニタリングに適したカメラを後付けすることが難しくなっています。

SOLOについては濱さんのHPに情報が掲載されています。HPはこちら

今年も多くの観測データを取得することができたので、これから解析を行います。

 


中干し(2017年)

Posted on Updated on

田植えから1ヶ月後の6月26日~7月10日まで中干しを実施しました。

営農情報によれば、中干しは7~10日間が目安となっていますが、梅雨前線・台風3号(NANMADOL)による雨の影響で、予定通りの中干しはできませんでした。

台風3号が通過してからは、最高気温が35℃以上の晴天が続き、一気に圃場の水が蒸発していきました。

昨年は中干しの確認を行うために、超低空(対地高度約5m)のマニュアル飛行で撮影しました。

今年は可視光、近赤外、熱赤外の3つのカメラで超低空(対地高度約5m)撮影を行い、中干し確認にはどれがベストか試みました。

 

超低空撮影(2017年7月9日撮影)

 

ダウンウォッシュの影響でイネが倒れた状態になってしまい、条間の土壌の様子が確認できませんでした。欠株したところで、中干しして生じたひび割れを確認できました。

上図の拡大部分(撮影原サイズ)

 

上空からの中干し確認の他に、地上からも確認したのが、下図になります。

地上からの中干し確認(2017年7月9日撮影)

 

 

近赤外カメラによる超低空撮影

 

近赤外画像では植生の分光反射が強く、土壌や水の分光反射が弱い特性があるため、中干しによる土壌のひび割れを探すのは難しいとわかりました。

熱赤外カメラによる超低空撮影

 

 

熱赤外カメラでは土壌とイネの葉の表面温度の計測できました。上図は条間部分の土壌で約40℃の高温になり、イネの葉の表面温度は約30℃の結果を示しています。今回使用している熱赤外カメラは画素数が少ないため、土壌のひび割れまでの細かい情報の抽出は難しいのかなと思いました。ただし、圃場内に水が残っているかどうかの確認には使えそうだと思います。

 

可視光の画像が中干し確認には一番わかりやすかったのですが・・・圃場内に入って確認するのも確実だと思います。

 


熱赤外カメラによる空撮

Posted on

少し前の話題になりますが、今年の農閑期(4月中旬)に熱赤外カメラによる空撮を実施しました。

熱赤外カメラはイネ群落の表面温度の連続観測(穂揃期)で使用しましたが、今回は圃場の地表面温度から土壌水分量および均平を把握できるのか観測してみました。

 

【圃場環境】

・田起しを行ってから、約1カ月経過 (試験サイトの隣(北側)の圃場も同時期に田起しを実施)

・熱赤外カメラによる空撮実施の前日に、数時間の降雨

 

オルソ画像(4月中旬)

 

熱赤外カメラ画像(4月中旬)

 

上記画像の拡大図

 

地表面温度は西側で相対的に高く、東側が低い結果となりました。特に中央部では温度が低くなっています。この部分を拡大してみると、田起し後に石拾いのために歩いた足跡周辺で地表面温度が低下していました。圃場を歩くと5cm程度は凹むので、熱赤外カメラはその影響までも観測できているのではないかと考えられます。また、西~東側に筋状に地表面温度が高くなっている場所は、昨年の収穫後に籾殻を撒いたところになります。ちなみに、隣(北側)の圃場は足跡もなく、地表面温度が一様な分布をしていることがわかりました。

わずかな環境の違いを捉えられる熱赤外カメラは有益なセンサであると実感しました。

 

上記の実験後に、トラクタによる均平化を行い、1週間後に再度空撮(可視光・熱赤外カメラ)を実施しました。

 

オルソ画像(5月上旬)

 

熱赤外カメラ画像(5月上旬)

 

トラクタによる均平化を行った後の均平精度は標準偏差1.5cmとなり、地表面温度のばらつきは前回の分布と異なる結果となりました。

西側にある給水口ではわずかな量の水が漏れ出していたため、地表面温度が低くなっています。オルソ画像では地表面の見た目の変化はありませんが、熱赤外ではちゃんと変化を捉えることができています。また、圃場の3辺(西側除く)にかけて温度が低い場所は、くろつけを行った際のトラクターの車輪跡になります。

今回の実験から熱赤外カメラを用いた観測は様々な現象を取得できるセンサとして有望なので、今後も継続して観測していく予定です。

 


リモセン学会発表資料

Posted on Updated on

11月に行われた日本リモートセンシング学会の発表資料になります。

要旨はこちらから見ることができます。

 

 
 今回の観測結果から、以下のことがわかりました。
  • 水稲の群落表面温度は一様ではなく、ばらつきをもって分布している。
  • 群落表面温度のばらつきはNDVIと対応しており、相対的に群落表面温度の低温域でNDVIが高くなり、反対に高温域ではNDVIが低い値を示す。
  • 群落表面温度とNDVIの時間変化は、日中の時間帯で明瞭な相関を示す。
  • 群落表面温度のばらつきは、玄米重量にも影響を及ぼす。
  • 今回の観測で、掛け流しによって群落表面温度が約3℃低下することが確認できた。

 


リモセン学会発表

Posted on Updated on

11月1日~2日にかけて、新潟市の新潟テルサで日本リモートセンシング学会が開催されます。

今回は8月に実施した温度観測の結果を発表します。

 

学会プログラム(要旨)はこちらからダウンロードして下さい。

 

UAV近接リモートセンシングによる水稲の群落表面温度の観測

〇田中 圭(日本地図センター)・濱 侃(千葉大)・近藤昭彦(千葉大)

要旨

本研究の目的は,稲の高温登熟障害に対応するために,水稲の群落内の温度環境をUAV近接リモートセンシングによって明らかにすることである。埼玉県坂戸市北部の水田を試験サイトとし、穂揃期にあたる2016年8月6日10時~7日12時にかけて水稲の群落表面温度の観測を行った。その結果、水稲の群落表面温度は一様ではなく、ばらつきをもって分布していることがわかった。また、このばらつきはNDVIと対応しており、相対的に群落表面温度の低温域でNDVIが高くなり、反対に高温域ではNDVIが低い値を示すことが明らかになった。

 
リモセン学会画像

       熱赤外解析の一例

学会では、農業リモセンやドローンに関連する発表が多くあります。いろんな情報を知ることができる機会なので、楽しみです。


温度観測

Posted on Updated on

近年、夏季における気温上昇にともなって、水稲の高温障害が問題となっています。
高温障害は白未熟粒(米が白く濁る)や胴割れ粒(亀裂が入る)などをもたらし、米の品質を大きく低下させます。米の品質が低下は、検査等級の低下やくず米の増加につながり、生産者にとって何ひとついいことはありません。

既往研究から、高温障害は出穂から登熟初期までの高温によって、米に障害がもたらされます。例えば、登熟期に27℃以上の日平均気温が続くと高温障害が発生し、白未熟粒が増加します。

そこで、今後の栽培において、高温障害に対応するためにも、まずは圃場内の温度環境を知る必要があります。
今回は千葉大学近藤研究室の学生さんと共同で、8月6日~7日(生育ステージは穂揃期)にかけて昼夜連続温度観測を実施しました。

ちなみに、試験サイトは埼玉県坂戸市に位置しているのですが、この地域は「あついぞ!熊谷」と同じぐらい夏季は高温になります。
最寄りのアメダスによる最高気温は6日36.6℃(猛暑日)、7日34.7℃(真夏日)となりました...

 

【観測項目】
1)圃場中央の温湿度観測
・高さの異なる2箇所に温湿度計を設置し、1分毎に記録。

温湿度観測
温湿度計設置

 

2)熱赤外カメラによる地表面温度観測
・熱赤外カメラをドローンに搭載し、上空100mから2時間ごとに垂直撮影(地上分解能約30cm)。
・改正航空法で夜間のドローン飛行は禁止されているので、夜間は自宅屋上から斜め撮影。

熱赤外カメラ例
ドローンによる地表面温度観測画像の例(2016年8月7日10時撮影)

 

3)NDVI
・近赤外カメラをドローンに搭載し、2時間ごとに撮影。

NDVI観測
ドローンによる近赤外撮影
(視線の先には、点のようなドローン)

 

現在、これらのデータを解析中ですが、いろいろと面白いことがわかってきました。

結果がまとまり次第、紹介します。

 

※今回の観測は自宅のガレージを拠点に実施したので、機材や食事などの融通が利き、無事に観測を終えることができました。

ガレージ

観測拠点
(ガレージ内に机や椅子、PC、バッテリ充電機、扇風機などを持ち込んで作業を実施)