代かき
結果:均平精度(2020年)
今年の代かきはトラクターナビを搭載することで、より的確に高い土を低い方へ土寄せを実施することができました。2019年に失敗してしまった圃場の乾きすぎ状態にならないように、天気予報と相談しながら水の状態を管理しました。その結果、ほぼ問題ない状態で田植えを迎えることができました。
田植えの直前(30分前)にドローンによる空撮を実施し、そのデータを用いて今年の均平精度の検証を行いました。2014年から比べると試験サイトの均平度の精度は良くなっていますが、そろそろ頭打ちになってきた感じです。実際にトラクターを動かし、圃場の均平化を実施してきましたが、満足いく状態になるまでは5年はかかるなぁと実感しました。また、均平化のアドバイスをくれたベテラン農家さんの言う通りでした。
ⅰ) 代かき後の凹凸マップ(2020年)
ⅱ) 代かき後のオルソ画像(2020年5月22日撮影)
2014~2020年における均平精度の変遷
2020年は均平精度:1.1cm・最大高低差:4.0cmとなりました。今年も均平精度は問題ない結果となり、水管理もムラなくできるはずです。あとは、昨年みたいな梅雨の長雨にならないことを祈るだけです。
結果:均平精度(2019年)
いろいろとが業務に縛られ、更新が怠ってしまいました。先月の内容になりますが・・・
今年も代かきが終わりました。事前にトラクターのエンジンオイルも取り替え、快調な作業でした。浅水代かきを実施した結果、代かき後の水位は低く、泥も予想以上に早く沈着しました。圃場内の水は1日おいたら透明です。
そこからは、例年行なっている均平度のチェックです。2014年から比べると均平度の精度は毎年良くなっています。2019年の結果は以下のようになりました。
代かき後のオルソ画像(2019年5月17日撮影)
代かき後の凹凸マップ(2019年)
2014~2019年における均平精度の変遷
ただし、今年は問題が発生しました。代かき後の天気が良すぎた結果、いつも以上に圃場を乾きすぎてしまい、一部の土が固くなってしまいました。今までは固くなる前に田植えを行なっていたので、問題ありませんでした…。それにしても今回の件は不覚でした。来年以降への教訓です。
浅水代かき
2019年5月号の現代農業では、浅水代かきで浮きワラを防ぐことができるという記事がありました。代かきについては、先代から浅水がよいということだけを教えられていたので、その理由について深く考えず行なっていました。よくよく考えてみると、今まで代かき後に浮きワラのかき出しを行ったことがありませんでした。
今回の現代農業の記事をよく読んで、 浅水代かきの理由について納得しました。
代かきを行う直前の状態
パッと見た感じは水が十分に入っていないかと思われるかもしれませんが、この状態で問題ありませんでした。土の上には昨年のワラが残っている状態です。
ワラが残っていても、浅水代かきをする事でワラを埋没させることができます。
凹凸マップを見ながら代かき中
見た目水が無い状態であっても、代かきをすることで水が見えてきます。
結果:均平精度(2018年)
試験サイトでは、代かきを行った後に泥が沈着するまで待ってから、水を落とし土壌が見える状態になるようにしています。これは、代かき後の圃場を測量するためです。
3年間実施していることもあって、近所の農家さんから不思議がられることもなくなりました。
代かき後のオルソ画像(2018年5月18日撮影)
圃場の北側では、ほんの少し水が残っています。一方、南側(明るく写っている部分)は水が抜けています。圃場にいくつかの線条の跡が残っていますが、これは鳥などの足跡になります。畦畔を超えて、隣の圃場(北側)までつながっています。
水がある程度なくなった状態で、ドローン計測による圃場の均平精度(凹凸の定量化)を求めました。その結果、2018年は均平精度:1.2cm・最大高低差:5.1cmとなりました。過去最高の結果です(といっても5回しかデータはありませんが・・・)。
過去の記事にも書きましたが、移植栽培で目標とする均平精度は標準偏差:1.8cm・最大高低差:9.0cmが目標値となっています(農林水産省)。
下に2016~2018年の代かき後の圃場凹凸マップを示します。
ⅰ) 代かき後の凹凸マップ(2018年)
ⅱ) 代かき後の凹凸マップ(2017年)
ⅲ) 代かき後の凹凸マップ(2016年)
2014~2018年における均平精度の変遷
試験サイトの均平精度は、2014年が標準偏差:2.6cm・最大高低差:10.2cmに対して、2015年は標準偏差:1.8cm・最大高低差:7.5cm、2016年は標準偏差:1.4cm・最大高低差:6.1cmとなり,年々圃場内の高低差は小さくなっています。トラクターの操縦経験を積むことで、
【参考】
2014~2017年までの均平精度と玄米タンパク含有率との関係を、濱ほか(2018):UAVリモートセンシングおよび登熟期の気象データに基づく玄米タンパク含有率推定 にまとめています。
代かき(2018年)
4月に圃場の凹凸を計測した結果、概ね均平化されていることがわかったので、今回は代かきによる大幅な土壌の移動は実施しませんでした。そのため、代かきの作業時間は去年の半分ぐらいでした。
代掻きの様子(2018年5月14日撮影)
トラクターを運転していると、どこからか小さい鳥(ムクドリやハクセキレイなど)たちが飛来してきます。この小鳥らは、トラクターが土を耕すことで逃げ出すカエルやミミズなどを捕食しています。それにしても、大きなエンジン音にも驚かずにトラクターの後ろを一緒に歩きながら効率的にエサを取るので、人間の生活環境に慣れていますね。
捕食中のムクドリ
ここ数年、5月ぐらいになるとヘリコプターが低空飛行で自宅周辺を通過していきます。写真では遠近感を上手く表現できませんが、突然のヘリコプターの接近は少し驚きます。調べてみると、ヘリコプターによる送電線の点検のため、低空飛行しているそうです。近い将来には、有人ヘリからドローンへ移行していくのでしょうね。
ヘリコプターによる送電線点検
代かき後のドローン計測(2017年)
ドローン計測は圃場内の凹凸をどのぐらい均平化できたかを定量的に明らかにするのが目的です。また、代かき後に水を張った状態でもドローンによるDSM計測ができるか実験を行いました。
まず、代かき後に水がなくなって土壌が見えている場合のオルソ画像とDSM(陰影図)
2017年5月18日撮影
圃場の均平精度は、圃場内の高さを測定し、それらの結果から算出した標準偏差が均平精度を示します。この標準偏差の値が大きいと圃場内の凹凸のムラが大きくなります。
目標とする均平精度は、湛水直播や乾田直播などといった栽培方法によって異なります。農林水産省の資料によると、移植栽培の場合は標準偏差:1.8cm・最大高低差:9.0cmが目標値となっています。
今回の代かきによる均平精度は、標準偏差:1.3cm・最大高低差:6.9cm となり、今年の均平化も悪くない出来だと思います。(参考:2016年の均平精度 標準偏差:1.4cm・最大高低差:6.1cm)
湛水状態(2017年5月19日撮影)
湛水状態でドローン計測して作成したオルソ画像とDSM(陰影図)
2017年5月19日撮影
この日の気象状態は、ほぼ無風で、時折微風によって水面が波を打つ程度でした。空撮時は全くの無風状態で絶好のデータ取得日でした。
水の透明度の高い箇所では底の土壌まではっきりと見ることができます。一方、泥水が撹拌してしまった箇所(圃場の西側)では土壌を見ることはできません。
これらのデータをSfM-MVS処理でオルソ画像・DSMを作成すると、泥水が撹拌している箇所ではマッチングが上手くいかず、ノイズとしてDSMの精度が落ちています。
下図は「湛水状態のDSM - 水のない状態のDSM」 の差分マップです。
湛水状態のDSM - 水のない状態のDSM マップ
泥水で底が見えなかった箇所でDSMが高い値(ノイズを含む)となったため、水の有無の差分で約10cmの差が生じました(圃場の西南側)。一方、透明度が高かった箇所では湛水状態のDSMが約2~3cmが高い結果となりました。
赤線部分の断面図
赤線部分の断面図の結果から、湛水状態のDSMが一定の高さを示していないので、水面の高さより圃場の高さが影響していると考えられます。水深や水の屈折率を用いて計算すれば、湛水状態でも圃場の高さを取得できる可能性があることが今回の実験でわかりました。
ただし、代かき後(湛水状態)に計測する場合、無風かつ泥が撹拌していない状態でないと精度の良いデータを取得することができないため、撮影条件は結構厳しいと思われます。
来年以降も代かき後は水がない状態で計測するのがベストなのかもしれません。
代かき直後のDSM計測
本来ならば代かきを終えたら、すぐに水を入れて湛水状態にします。
しかし、今回は代かきを行うことによって、どのぐらい圃場内の凸凹を均平にすることができたかを計測するために、あえて水を入れませんでした。
近所の農家さんからは不思議がられましたが...。
ドローンや地上レーザーを用いて、代かき直後のDSM計測は困難でした。なぜなら、圃場内に水を張ってしまうと、水の反射によって正確な高さが求めることができません。しかし、代かきでどのぐらい土壌を移動させ、均平化できたかを数値化してみたいと思い、代かきを実施してから水がなくなった3日目にドローンによるDSM計測を行いました。
圃場の西側にある取水口側で圃場全体の平均高より約2cm高く、東側の排水口では約2cm低くなっていることがわかりました。水管理を考えると問題ない範囲と考えられます。
代かきを実施してから3日後に空撮し、作成したオルソ画像
地上から撮影した代かき3日後の様子
例年は代かき後に雑草防除初期剤である農将軍フロアブル(3成分)を散布していましたが、今年から散布をやめました。
少しずつですが、農薬を減らす方針で「どろーん米」の栽培を行っていきたいと思います。
収穫・品質を左右する代かき
今までのモニタリング結果から、代かきはその年の収穫量・品質を決める重要な作業になります。
代かき前にいろいろと圃場の均平化を試しましたが、圃場内の土を最も多く移動できるのは代かきになります。
今回はドローンで計測したDSMをもとに、まず「土寄せ」を行いました。
圃場の平均高より高い場所を中心に低い方へ...
ある程度の土寄せが終われば、いよいよ代かきです.
約3反の圃場にかかった時間は5時間(土寄せ+代かき)です。これでも自分の思い通りの結果にはなりませんでした。
代かき後の圃場にうつる夕日です。
次週は田植えになります。5月はいろいろと作業が続きます。