モニタリング手法

倒伏の定量化

Posted on Updated on

以前にも紹介したように、コシヒカリは稲穂が垂れやすく、倒伏しやすい品種になります。
今年の「どろーん米」は、8月19日の降雨(約67mm)をきっかけに、出穂2週間前に診断した高リスク箇所から徐々に倒伏が進んでいきました。

今回はモニタリングデータから倒伏の定量化について、少しまとめてみました。

まず、イネが倒伏してしまうと、農機具による収穫が難しくなります。
我が家ではコンバインを所有しているので今まで気にしていませんでしたが、農作業を外部に委託した場合、倒伏した圃場では標準料金とは別に10%~30%程度加算されてしまいます(料金は各自治体によって異なります)。たとえば、島根県邑南町が公開している農作業標準賃金(平成29年度)では、倒伏面積割合で割増料金が以下のように決まっています。

倒伏面積割合 0%~30% 30%~50% 50%~80% 80%以上
割増 規定料金 20%増 30%増 50%増

※標準価格:コンバインによる刈取り 10aあたり20,800円

現場では倒伏面積割合をいちいち算出するのは時間がかかるので、担当者の目分量で判断していることがほとんどだと思います。

 

そこで、刈取り前の空撮データから倒伏面積割合を算出できるか試してみました。

【使用するデータ】

・ドローンによる空撮(可視光:Richo GR)データ(2017年9月8日撮影:刈取り前日)

狭い範囲なら目視で倒伏範囲を特定しても時間はかかりませんが、広範囲に及ぶと目視での範囲特定は手間と時間がかかってしまいます。
リモートセンシングの分野では、古くから画像データを利用した画像分類は得意とするところです。たとえば、JAXAがALOS/ALOS-2の人工衛星から画像分類して作成した高解像度(解像度約10m)の土地被覆図などがあります。

画像分類には「教師なし分類」・「教師付き分類」がありますが、今回はトレーニングデータを必要とせず、画像の特徴量をもとに自動分類を行う「教師なし分類」を選択しました。

ドローンによる空撮画像から作成したオルソ画像を用いて、教師なし分類を行った結果が下図になります。

画像分類結果(2017年9月8日撮影データを使用)

 

誤分類も多々ありますが、大きく倒伏した範囲の抽出ができているので、倒伏の抽出には教師なし分類も使えることがわかりました。なお、試験サイトの倒伏面積は 517.1㎡ で圃場面積の 15.9% となりました。

 

画像分類による倒伏範囲の特定は倒伏しているかどうかを抽出する方法で、イネがどの程度の傾きで倒伏しているかはわかりません。

イネの倒伏程度の判断基準は、一般的に倒伏したイネの傾きの大きさを「0(無)」~「5(甚)」の6段階で表すことが多いそうです。

倒伏程度の判断基準

 

今度は、モニタリング解析で作成するDSMデータを用いて倒伏程度を求めてみます。
使用するデータは、倒伏する直前(出穂期から14日後)と刈取り前日(出穂期から40日後)の2時期のDSMデータです。

【使用するデータ】

・ドローンによる空撮データから作成したDSM
倒伏直前のDSM :2017年8月13日撮影
刈取り前日のDSM:2017年9月8日撮影

 

倒伏直前のDSMと刈取り前日のDSMの三角関数から角度を求め、倒伏程度に変換した分布図が下図になります。

倒伏前後のDSMから計算した倒伏程度(ラスタデータ)

 

地点1 倒伏のない状態(ベテラン農家さん)

 

地点2 倒伏程度の大きい地点(試験サイト)

 

試験サイトでは倒伏程度の大きい箇所(地点2)が多く見られますが、隣のベテラン農家さんの圃場ではほとんど倒伏(地点1)がありません。
移植日は同じなので、同じ気象条件であるにもかかわらず、結果的に倒伏の差が生じます。これがベテランと新米の違いなのかもしれません...。

 

2016年から水稲株単位でも解析を行っています。倒伏程度も株単位(2017年:圃場全体で約4.7万株)で計算すると次のようになりました。

水稲株単位の倒伏程度(ポイントデータ)

 

水稲株単位で求めた倒伏程度別占有率

 

コンバインによる収穫作業が難しくなるのを「倒伏程度4」と仮定した場合、倒伏割合(倒伏程度4+倒伏程度5)は31.4%(約1.4万株)となりました。
最初で紹介した画像分類による倒伏範囲の抽出より高い結果となります。精度検証として、画像分類によって抽出した倒伏範囲と水稲株単位の倒伏程度で重ね合わせ分析を行った結果、倒伏範囲に含まれる水稲株の約82%が倒伏程度4.5~5となりました。このことから、画像分類による倒伏範囲の抽出は、上空からでも判読しやすい倒伏程度が大きい「4.5~5」を捉えているのではないかと考えられます。

 

来年こそ、倒伏しないような水稲栽培ができるように頑張ります!!

 


LIVE配信システムの紹介

Posted on Updated on

今週末の9日~10日に試験サイトの稲刈りを実施する予定です(6日時点の天気予報では雨は降りません)。

6月からLIVE配信を始めましたが、ようやく刈取りの様子を配信できます。コンバインで刈取りをしている様子をご覧いただけるかも知れません。

 

LIVE配信のきっかけは、寝ているだけではもったいないノートPC(2010年モデル)を活用したいと思い始めました。数年前まででは、個人でLIVE配信は敷居が高く、機材を準備するだけでも大変でした。現在は、配信の要となるソフトがオープンソースソフトウェアとして公開されています。今回利用したのは「OBS Studio」になります。また、配信するにあたって利用したサービスはYouTubeです。こちらも無料でアカウントを作成することができるので、ソフト面に関しては無料で準備することができます。

ハード面のカメラは、5年前に自宅に設置した防犯カメラを圃場監視用に再配置したので、カメラの購入費用はかかっていません。機種が古いため、高解像度配信はダメでしたが、カメラ次第では鮮明な画質のLIVE配信も可能です。

LIVE配信を始めた6月当初は順調に配信できていましたが、気温が高くなるにつれ、ノートPCへの負荷も増していき、最終的には熱暴走(内蔵ファンの故障?)による突然のシャットダウンが続きました。その結果、一番よく閲覧する「自分」が外出先から圃場を確認できなくなってしまいました。LIVE配信は天気などの確認もできるので、使ってみると意外と役に立っていました。

ノートPCの熱暴走を直すことは難しかったので、配信専用のPCを購入しました。PCは格安・小型・冷却系がしっかりしていることを条件に探した結果、ECS社の LIVA X²(リバスクエア) を購入しました。大きさはお弁当箱サイズぐらいで、Windows 10 Home 64bit OSを標準搭載して19,800円(Amazon)です。

購入したLIVA X²でもLIVE配信にかかる負荷は大きく、1時間ぐらい経過するとヒートシンクがある本体底面はかなりの熱を持っていました。一方、本体の上面はほんのり暖かい程度でした。いずれは熱暴走も起きてしまうかもしれないと思い、簡易な空冷装置を作成しました。材料は100円均一で購入した小型ブックスタンド2個とUSBで動作するファン1個になります。熱を発生させるヒートシンクが底面にあるので、この部分を小型ブックスタンドで持ち上げ、その空間にUSBファンを設置して冷やしていきます。この簡易な空冷装置の効果は抜群で、底面を触っても全く熱くなく、熱暴走の心配もなくなりました。

配信用PC

 

【LIVE配信システム】

LIVE配信システム

 

1.防犯カメラ無線送受信機セット:AT-2730WCS(キャロットシステムズ社)

屋上にカメラを設置。映像サイズ:640 × 480 pixel (約30万画素のVGA)

2.RCA→USB変換ユニット:GV-USB2(アイ・オー・データ機器)

RCA端子の受信機からPCで表示出来るようにUSB端子に変換

 

現在、LIVE配信を行っているシステムは3万円程度(新たにPCや部品などを購入した金額)のコストがかかりました。使わないPCなどを用いれば、さらに安くシステムを構築することは可能です。それにしても、こんなにも簡単にLIVE配信ができるとは思いませんでした。

 


収量予測・・・減収の見込み

Posted on Updated on

8月に入ってから、オホーツク海高気圧からの「やませ」が関東地方まで流れ込んでいるため、埼玉県も日照不足となっています。東北の太平洋側(岩手県、宮城県、福島県)では、平年を大きく下回っていることから、いもち病の心配があるそうです。

試験サイト周辺の日照不足を定量的に見るために、最寄りのアメダス地点:鳩山の日照時間を8月1日~20日までまとめてみました。今年の8月1日~20日間の日照時間は36.1時間と平年の34.5%と大きく下回っています。出穂期からの日照時間は収量・食味に大きく影響します。気象庁によると8月下旬からは平年並みに戻る見込みだそうなので、晴れることを祈ります。

     8月1日~20日までの積算日照時間(2014~2017)

 

今年も収量予測をしてみました。使用するのは7月30日の出穂期のデータになります。ただし、生育が順調に進んだ出穂期のデータなので、それ以降の日照不足を反映していません。そのため、ここで推定する値は日照不足がなかった場合の値になります。ちなみに、平年並みの日照時間があった2016年の収量結果はこちらから閲覧できます。

【使用するデータ】

・ドローン計測によるNDVI(2017年7月30日撮影)

・単位面積あたりの収量とNDVIの相関式(2016年データの解析結果)

収量(kg) = 2016年度のパラメータ × メッシュごとのNDVI

試験サイト全体の玄米収量予測 (ドローン): 1474 kg

 

8月の日照不足を考慮にいれると、この求めた推定値(玄米収量1474kg)の約20%の減収(玄米収量1180kg)になると考えています。

今年の収量から解析して得られる「単位面積あたりの収量とNDVIの相関式」は冷夏用のパラメータとして、今後の栽培に活かせるはずです。農業技術が進んでも、天候次第で収量・品質が大きく左右されるのは昔から変わりません。

 


倒伏リスク診断(2017年)

Posted on Updated on

今年は7月30日に出穂期を迎えましたので、出穂14日前の7月16日のモニタリングデータを利用して、倒伏しやすいコシヒカリの倒伏リスク診断を行ってみました。

倒伏リスク診断の計算方法はこちらに掲載しています。

 

倒伏リスク診断マップ(2017年)

「7月16日(出穂14日前)のDSM-5月18日(代掻き直後)のDSM」から計算した倒伏リスク診断マップです。橙~赤色は倒伏リスクの高い株で、青色はリスクが低い株になります。今年は圃場の西側(特に南西側)で倒伏リスクが高い結果となっています。昨年は圃場の北側で倒伏リスクが高い結果となり、実際に倒伏してしまいました。草丈のむらが出ないように、圃場の均平化など努力しているのですが、均一に栽培する難しさを実感します。

 

2017年7月16日空撮のオルソ画像


NDVI & 温度観測

Posted on

昨年(8月6~7日)は試験サイトの圃場内の温度環境を把握するために、熱赤外カメラによる温度観測を行いました。今年も昨年同様の観測を千葉大学近藤研究室の濱さんと共同で、8月5日~6日(生育ステージは乳熟期)にかけてNDVI & 温度観測を実施しました。天気予報では曇一時雨となっており、観測は難しいかなぁと思っていましたが、2日間とも雨は降らず、無事に観測することができました。

昨年の観測結果からNDVIが高い箇所では群落表面温度の低温域となり、反対にNDVIが低い箇所では高温域となることがわかりました。また、群落表面温度のばらつきは玄米重量にも影響を及ぼすことが昨年の結果から示されています。

今年は出穂期から曇天が続き、日平均気温が27℃を超えた日はわずか3日(最大で28.2℃)です(8月6日時点)。そのため、2017年度産「どろーん米」は高温登熟障害の影響が小さいかもしれません。

【観測項目】
1)同一圃場内の生育状況が異なる2箇所で温湿度・CO2観測
・出穂期のNDVI分布を基に、NDVIが高い(草丈が高い)・NDVIが低い(草丈が低い)場所の2箇所に、観測機器を設置。


観測機器(温湿度・CO2

昨年の観測機器より耐久性等を増した装置を濱さんが作成しました。装置は塩ビ管(100mm)をアルミ箔で覆い、太陽光パネル+モバイルバッテリを電源にした通風機能を備えています。

 

2)熱赤外カメラによる群落表面温度観測
・昨年と同様に熱赤外カメラをドローンに搭載し、上空100mから2時間ごと(日の出~日の入りまで)に垂直撮影(地上分解能約30cm)。

上空100mからの温度観測画像(2017年8月5日12時撮影)

 

3)NDVI観測
・Yubaflexをドローンに搭載し、上空50mから2時間ごと(日の出~日の入りまで)に垂直撮影(地上分解能約2cm)。

SOLO(3DR社)

近未来的なデザインに仕上がっているSOLO(濱さん持参)にNDVI計測を担当してもらいました。SOLOは機底に付属のカメラが付いていないので、好きなカメラを搭載することができます。なお、ドローン業界の大きなシェアを占めているPhantomシリーズの場合は空撮用カメラが標準装備されているため、水稲モニタリングに適したカメラを後付けすることが難しくなっています。

SOLOについては濱さんのHPに情報が掲載されています。HPはこちら

今年も多くの観測データを取得することができたので、これから解析を行います。

 


中干し(2017年)

Posted on Updated on

田植えから1ヶ月後の6月26日~7月10日まで中干しを実施しました。

営農情報によれば、中干しは7~10日間が目安となっていますが、梅雨前線・台風3号(NANMADOL)による雨の影響で、予定通りの中干しはできませんでした。

台風3号が通過してからは、最高気温が35℃以上の晴天が続き、一気に圃場の水が蒸発していきました。

昨年は中干しの確認を行うために、超低空(対地高度約5m)のマニュアル飛行で撮影しました。

今年は可視光、近赤外、熱赤外の3つのカメラで超低空(対地高度約5m)撮影を行い、中干し確認にはどれがベストか試みました。

 

超低空撮影(2017年7月9日撮影)

 

ダウンウォッシュの影響でイネが倒れた状態になってしまい、条間の土壌の様子が確認できませんでした。欠株したところで、中干しして生じたひび割れを確認できました。

上図の拡大部分(撮影原サイズ)

 

上空からの中干し確認の他に、地上からも確認したのが、下図になります。

地上からの中干し確認(2017年7月9日撮影)

 

 

近赤外カメラによる超低空撮影

 

近赤外画像では植生の分光反射が強く、土壌や水の分光反射が弱い特性があるため、中干しによる土壌のひび割れを探すのは難しいとわかりました。

熱赤外カメラによる超低空撮影

 

 

熱赤外カメラでは土壌とイネの葉の表面温度の計測できました。上図は条間部分の土壌で約40℃の高温になり、イネの葉の表面温度は約30℃の結果を示しています。今回使用している熱赤外カメラは画素数が少ないため、土壌のひび割れまでの細かい情報の抽出は難しいのかなと思いました。ただし、圃場内に水が残っているかどうかの確認には使えそうだと思います。

 

可視光の画像が中干し確認には一番わかりやすかったのですが・・・圃場内に入って確認するのも確実だと思います。

 


欠株率

Posted on Updated on

田植えから1ヶ月が経過すると、苗も順調に生長し上空からのモニタリングでもはっきりと確認できます(この頃の草丈は約35cm)。

昨年からはじめた「水稲株位置の抽出」を今年も行いました。抽出方法については、昨年の記事をご参照下さい。

水稲株位置の抽出に使用した画像は、移植してから28日後の近赤外オルソ画像になります。

 

水稲株位置抽出(2017年6月18日撮影)

オルソ画像と抽出した水稲株位置(オレンジ点)を重畳した画像になります。両者の画像を比較してもわかるように、おおよその水稲株の位置抽出ができているのではないかと思います。

 

圃場全体の水稲株位置(2017年) 背景:近赤外画像(Canon S110近赤外改造)

今年は株間21cmに設定して移植を行った結果、圃場内の株数は約4.7万株となりました。ちなみに、昨年は株間18cm設定で約5.1万株となっております。

 

次に、水稲株をメッシュごとにまとめて可視化した結果です。

 

単位面積あたりの株数(株/㎡) 背景:可視画像(Richo GR)

圃場の西側は田植機の移植方向が異なる部分にあたるため、若干株数が少なくなっています。圃場内全体では単位面積あたり14.2(株/㎡)【坪あたり46.9株】となりました(昨年の結果はこちらから)。

また、株間21cmの標準的な単位面積あたりの株数は15.9(株/㎡)となります。そこで、この値を基準としてメッシュごとの欠株率を算出してみました。

 

欠株率(2017年) 背景:近赤外画像(Canon S110近赤外改造)

その結果、メッシュ全体の欠株率は7.9%となりました。欠株率が最も高い値を示したメッシュは、トラクタの出入り部分にあたります。それ以外のメッシュでは、だいたい数%の欠株率で収まっています。

 


熱赤外カメラによる空撮

Posted on

少し前の話題になりますが、今年の農閑期(4月中旬)に熱赤外カメラによる空撮を実施しました。

熱赤外カメラはイネ群落の表面温度の連続観測(穂揃期)で使用しましたが、今回は圃場の地表面温度から土壌水分量および均平を把握できるのか観測してみました。

 

【圃場環境】

・田起しを行ってから、約1カ月経過 (試験サイトの隣(北側)の圃場も同時期に田起しを実施)

・熱赤外カメラによる空撮実施の前日に、数時間の降雨

 

オルソ画像(4月中旬)

 

熱赤外カメラ画像(4月中旬)

 

上記画像の拡大図

 

地表面温度は西側で相対的に高く、東側が低い結果となりました。特に中央部では温度が低くなっています。この部分を拡大してみると、田起し後に石拾いのために歩いた足跡周辺で地表面温度が低下していました。圃場を歩くと5cm程度は凹むので、熱赤外カメラはその影響までも観測できているのではないかと考えられます。また、西~東側に筋状に地表面温度が高くなっている場所は、昨年の収穫後に籾殻を撒いたところになります。ちなみに、隣(北側)の圃場は足跡もなく、地表面温度が一様な分布をしていることがわかりました。

わずかな環境の違いを捉えられる熱赤外カメラは有益なセンサであると実感しました。

 

上記の実験後に、トラクタによる均平化を行い、1週間後に再度空撮(可視光・熱赤外カメラ)を実施しました。

 

オルソ画像(5月上旬)

 

熱赤外カメラ画像(5月上旬)

 

トラクタによる均平化を行った後の均平精度は標準偏差1.5cmとなり、地表面温度のばらつきは前回の分布と異なる結果となりました。

西側にある給水口ではわずかな量の水が漏れ出していたため、地表面温度が低くなっています。オルソ画像では地表面の見た目の変化はありませんが、熱赤外ではちゃんと変化を捉えることができています。また、圃場の3辺(西側除く)にかけて温度が低い場所は、くろつけを行った際のトラクターの車輪跡になります。

今回の実験から熱赤外カメラを用いた観測は様々な現象を取得できるセンサとして有望なので、今後も継続して観測していく予定です。

 


LIVE配信はじめました

Posted on Updated on

お知らせ

LIVE配信はじめました。

水稲ドローンモニタリングを実施している試験サイトの様子を確認することができます。現在のところ、稲刈りの期間までLIVE配信を予定しています。

メニューバーの「LIVE配信」から確認することができます。

 

モニタリングカメラから眺める試験サイト


代かき後のドローン計測(2017年)

Posted on Updated on

今年も代かき直後の圃場の高さをドローンを用いて計測しました。(参考:昨年の計測結果

代かき直後は泥水となっているので、泥が沈着するまでの2日間ほど時間を置いてから、落水および蒸発によって土壌が見える状態までにしてから計測します。

代かき後に湛水を行わず、ある程度水がなくなった状態(2017年5月18日撮影)

 

ドローン計測は圃場内の凹凸をどのぐらい均平化できたかを定量的に明らかにするのが目的です。また、代かき後に水を張った状態でもドローンによるDSM計測ができるか実験を行いました。

まず、代かき後に水がなくなって土壌が見えている場合のオルソ画像とDSM(陰影図)

2017年5月18日撮影

圃場の均平精度は、圃場内の高さを測定し、それらの結果から算出した標準偏差が均平精度を示します。この標準偏差の値が大きいと圃場内の凹凸のムラが大きくなります。

目標とする均平精度は、湛水直播や乾田直播などといった栽培方法によって異なります。農林水産省の資料によると、移植栽培の場合は標準偏差:1.8cm・最大高低差:9.0cmが目標値となっています。

今回の代かきによる均平精度は、標準偏差:1.3cm・最大高低差:6.9cm となり、今年の均平化も悪くない出来だと思います。(参考:2016年の均平精度 標準偏差:1.4cm・最大高低差:6.1cm)

代かき後は湛水状態にしなければいけませんが、今年も水を張らなかったので、近所のベテラン農家さんは心配していたそうです。ご迷惑をお掛けしました。m(_ _)m

水を張った状態でもドローンによる計測ができるか実験するために、水がない状態での空撮が終了直後に水を入れました。翌日には、2~3cm程度の深さで水が張った状態となります。

湛水状態(2017年5月19日撮影)

湛水状態でドローン計測して作成したオルソ画像とDSM(陰影図)

2017年5月19日撮影

 

この日の気象状態は、ほぼ無風で、時折微風によって水面が波を打つ程度でした。空撮時は全くの無風状態で絶好のデータ取得日でした。

水の透明度の高い箇所では底の土壌まではっきりと見ることができます。一方、泥水が撹拌してしまった箇所(圃場の西側)では土壌を見ることはできません。

これらのデータをSfM-MVS処理でオルソ画像・DSMを作成すると、泥水が撹拌している箇所ではマッチングが上手くいかず、ノイズとしてDSMの精度が落ちています。

下図は「湛水状態のDSM - 水のない状態のDSM」 の差分マップです。

 

湛水状態のDSM - 水のない状態のDSM マップ

泥水で底が見えなかった箇所でDSMが高い値(ノイズを含む)となったため、水の有無の差分で約10cmの差が生じました(圃場の西南側)。一方、透明度が高かった箇所では湛水状態のDSMが約2~3cmが高い結果となりました。

赤線部分の断面図

赤線部分の断面図の結果から、湛水状態のDSMが一定の高さを示していないので、水面の高さより圃場の高さが影響していると考えられます。水深や水の屈折率を用いて計算すれば、湛水状態でも圃場の高さを取得できる可能性があることが今回の実験でわかりました。

 

ただし、代かき後(湛水状態)に計測する場合、無風かつ泥が撹拌していない状態でないと精度の良いデータを取得することができないため、撮影条件は結構厳しいと思われます。

来年以降も代かき後は水がない状態で計測するのがベストなのかもしれません。