Month: 7月 2017

出穂期(2017年)

Posted on Updated on

昨年は8月4日に出穂期となりましたが、今年は天候の影響もあって7月30日に出穂期を迎えました。昨年より5日ほど早くなっています。

穂の上部から次々に開花している様子(2017年7月30日撮影)

 

出穂期のバラツキが気になったので、移植~出穂の期間(2014~2017年)の気象データをまとめてみました。気象データは最寄りのアメダス地点:鳩山(直線距離:4.8km)の日照時間と気温を使用しています。

移植日~出穂期までの積算日照時間・積算温度

 

その結果、この地域でコシヒカリが移植してから出穂するまでに、日照時間:約400(h)・積算温度:約1700(℃)※必要であると考えられます。もちろん、この数値は地域差があるので、どこでも適応できる数値ではないと思いますが・・・これまでの既往研究について調べないといけません。

※積算温度は日平均気温を積算して計算しています。

 

移植日~出穂日の積算日照時間・積算温度

移植日 出穂期 日数 積算日照時間(h) 積算温度(℃)
2017 5月21日 7月30日 71 399.8 1697.6
2016  5月21日 8月4日 76 381.3 1774.5
2015  5月23日 8月3日 73 427.8 1742.1
2014 5月24日 8月3日 72 400.4 1714.0
Average 5月22日 8月3日 73 396.1 1711.3

 

冒頭にも書きましたが、今年は7月30日に出穂期を迎えましたが、移植してから出穂までの日数は71日で、4年間の観測結果からみても特段早いわけでもありませんでした。昨年は天候不順で出穂が遅くなり、ちょうど例年の出穂期に当てはまっただけでした。自分の頭の中では、例年の出穂日の印象が強いため、今年の生育が早まっていると思い込んでいました。数字で見ると、ほぼ例年通りに生育していることがわかります。

 

今年は株間を21cmで移植しました(昨年は株間18cm、一昨年以前は株間16㎝)。

週一のドローンによるモニタリングと同時に、地上では草丈・茎数の調査を8地点(40株)で実施しています。*2014年は10株の調査

出穂期における1株あたりの茎数は、2014年15.5本、2015年17.5本、2016年20.7本と株間を広げたことによって茎数も増加しています。今年は茎数は24.2本となっています。

試験サイトにおける1株当たりの茎数の時系列変化

 

出穂期以降もこのまま順調に生育すれば、従来から言われているように疎植しても収量は減少しないと思われます。ただ、2年連続台風による冠水が発生しているので、今年も心配です。

 

 


2017年:本田防除(殺菌)

Posted on Updated on

台風3号(NANMADOL)が通過してから晴天が続いたことによって、例年よりイネの生育速度が早まってしまいました。

事前に予定したスケジュールの調整が難しく、穂の一部が既に出穂してしまった状態でいもち病、紋枯れ病や内頴褐変病等に対する防除を行いました。本来なら、出穂直前に予防散布を行うのがベストなのですが・・・まだまだ天候を読む力が足りません。

また、防除を行った日は曇天で、夕方から小雨の予報だったので、少しでも早く乾燥させるために早朝から実施しました。

土日が農作業のメインになる兼業農家にとって、イネの生育状況や天候に合わせて動けないのはツライところです。

 

年に2回使用する動噴(自走式ラジコン動力噴霧機)

 

昨年は初めて散布を行ったため、機械の設定やホースの扱い方に悩まされたのですが、今年は昨年の経験も活かして、自分なりに手際よく散布を行えました。

 

散布の様子

次の動噴使用は、カメムシ類の防除になります。

 

【使用農薬】

・ノンブラスフロアブル(2成分):殺菌剤

 対策:いもち病、内頴褐変病、変色米、穂枯れ

 10aあたりに水100l + ノンブラスフロアブル100ml(1000倍希釈)

 

ノンブラスフロアブル

 

 


中干し(2017年)

Posted on Updated on

田植えから1ヶ月後の6月26日~7月10日まで中干しを実施しました。

営農情報によれば、中干しは7~10日間が目安となっていますが、梅雨前線・台風3号(NANMADOL)による雨の影響で、予定通りの中干しはできませんでした。

台風3号が通過してからは、最高気温が35℃以上の晴天が続き、一気に圃場の水が蒸発していきました。

昨年は中干しの確認を行うために、超低空(対地高度約5m)のマニュアル飛行で撮影しました。

今年は可視光、近赤外、熱赤外の3つのカメラで超低空(対地高度約5m)撮影を行い、中干し確認にはどれがベストか試みました。

 

超低空撮影(2017年7月9日撮影)

 

ダウンウォッシュの影響でイネが倒れた状態になってしまい、条間の土壌の様子が確認できませんでした。欠株したところで、中干しして生じたひび割れを確認できました。

上図の拡大部分(撮影原サイズ)

 

上空からの中干し確認の他に、地上からも確認したのが、下図になります。

地上からの中干し確認(2017年7月9日撮影)

 

 

近赤外カメラによる超低空撮影

 

近赤外画像では植生の分光反射が強く、土壌や水の分光反射が弱い特性があるため、中干しによる土壌のひび割れを探すのは難しいとわかりました。

熱赤外カメラによる超低空撮影

 

 

熱赤外カメラでは土壌とイネの葉の表面温度の計測できました。上図は条間部分の土壌で約40℃の高温になり、イネの葉の表面温度は約30℃の結果を示しています。今回使用している熱赤外カメラは画素数が少ないため、土壌のひび割れまでの細かい情報の抽出は難しいのかなと思いました。ただし、圃場内に水が残っているかどうかの確認には使えそうだと思います。

 

可視光の画像が中干し確認には一番わかりやすかったのですが・・・圃場内に入って確認するのも確実だと思います。