Month: 5月 2017

真夏日の田植え(2017年)

Posted on Updated on

埼玉県坂戸市の最高気温は33度となり、真夏日の田植えとなりました。

今年も移植方法・肥料を変えて、栽培を行います。
昨年は株間を18cmに変更しましたが、今年は一部の圃場で21cmの疎植に挑戦です。

1)株間:21cm、肥料:基肥一発肥料「コシヒカリ一発LP485」、面積:3反
2)株間:18cm、肥料:基肥一発肥料「コシヒカリ一発LP485」、面積:2反
3)株間:18cm、肥料:基肥一発肥料「スーパーらくだ君500」、面積:1反

株間を一部変更したので、育苗箱は昨年の130箱から115箱に節減できました。今後、6反全部を21cmに変更した場合は計算上103箱で十分なので、さらにコストカットにつながることが予想できます。祖父・父の代では例年150箱(株間16cm)用意していましたが、その時と比較すると今年は約23%カットすることができました。

また、肥料は「スーパーらくだ君500」を実験的に1反の圃場で試します。この肥料は1反あたり20kgなので、「コシヒカリ一発LP485」の半分の量になります。コスト面で考えると「スーパーらくだ君」は魅力的ですが、食味に違いができるかわからないので、今年の栽培でチェックします。


基肥一発肥料:「コシヒカリ一発LP485」、「スーパーらくだ君500」

1年に1回しか使わない田植機ですが、駆動系のトラブルもなく、順調に植えることができました。使用後は念入りな泥落としが必要です。泥が固まってしまうと、取り除くのは大変です。

田植機の洗車(泥落し)

株間21cmの疎植は、周囲の圃場と比べても見た目がスカスカでちょっと心配になります。

今年の田植えの出来栄え

ちょっと大きいバケツ栽培

今年は庭先に息子専用の圃場を用意しました。水稲栽培に興味を持ってくれればいいのですが(笑)。

順調に生育すれば、9月中旬に収穫を迎えます。

 

【使用農薬】
・ルーチンアドスピノ箱粒剤(育苗箱1箱50g)
いもち病などの対策

 

【使用肥料】
・コシヒカリ一発LP485(1反あたり35~40kg:2袋)

・スーパーらくだ君500(1反あたり20kg:1袋)

代かき後のドローン計測(2017年)

Posted on Updated on

今年も代かき直後の圃場の高さをドローンを用いて計測しました。(参考:昨年の計測結果

代かき直後は泥水となっているので、泥が沈着するまでの2日間ほど時間を置いてから、落水および蒸発によって土壌が見える状態までにしてから計測します。

代かき後に湛水を行わず、ある程度水がなくなった状態(2017年5月18日撮影)

 

ドローン計測は圃場内の凹凸をどのぐらい均平化できたかを定量的に明らかにするのが目的です。また、代かき後に水を張った状態でもドローンによるDSM計測ができるか実験を行いました。

まず、代かき後に水がなくなって土壌が見えている場合のオルソ画像とDSM(陰影図)

2017年5月18日撮影

圃場の均平精度は、圃場内の高さを測定し、それらの結果から算出した標準偏差が均平精度を示します。この標準偏差の値が大きいと圃場内の凹凸のムラが大きくなります。

目標とする均平精度は、湛水直播や乾田直播などといった栽培方法によって異なります。農林水産省の資料によると、移植栽培の場合は標準偏差:1.8cm・最大高低差:9.0cmが目標値となっています。

今回の代かきによる均平精度は、標準偏差:1.3cm・最大高低差:6.9cm となり、今年の均平化も悪くない出来だと思います。(参考:2016年の均平精度 標準偏差:1.4cm・最大高低差:6.1cm)

代かき後は湛水状態にしなければいけませんが、今年も水を張らなかったので、近所のベテラン農家さんは心配していたそうです。ご迷惑をお掛けしました。m(_ _)m

水を張った状態でもドローンによる計測ができるか実験するために、水がない状態での空撮が終了直後に水を入れました。翌日には、2~3cm程度の深さで水が張った状態となります。

湛水状態(2017年5月19日撮影)

湛水状態でドローン計測して作成したオルソ画像とDSM(陰影図)

2017年5月19日撮影

 

この日の気象状態は、ほぼ無風で、時折微風によって水面が波を打つ程度でした。空撮時は全くの無風状態で絶好のデータ取得日でした。

水の透明度の高い箇所では底の土壌まではっきりと見ることができます。一方、泥水が撹拌してしまった箇所(圃場の西側)では土壌を見ることはできません。

これらのデータをSfM-MVS処理でオルソ画像・DSMを作成すると、泥水が撹拌している箇所ではマッチングが上手くいかず、ノイズとしてDSMの精度が落ちています。

下図は「湛水状態のDSM - 水のない状態のDSM」 の差分マップです。

 

湛水状態のDSM - 水のない状態のDSM マップ

泥水で底が見えなかった箇所でDSMが高い値(ノイズを含む)となったため、水の有無の差分で約10cmの差が生じました(圃場の西南側)。一方、透明度が高かった箇所では湛水状態のDSMが約2~3cmが高い結果となりました。

赤線部分の断面図

赤線部分の断面図の結果から、湛水状態のDSMが一定の高さを示していないので、水面の高さより圃場の高さが影響していると考えられます。水深や水の屈折率を用いて計算すれば、湛水状態でも圃場の高さを取得できる可能性があることが今回の実験でわかりました。

 

ただし、代かき後(湛水状態)に計測する場合、無風かつ泥が撹拌していない状態でないと精度の良いデータを取得することができないため、撮影条件は結構厳しいと思われます。

来年以降も代かき後は水がない状態で計測するのがベストなのかもしれません。

 

代かき(2017年)

Posted on Updated on

私の経験(短い期間ですが・・・)から収穫量・品質の向上には「均平化」は大切な作業だと思います。

今年も代かき前には、いろいろと圃場の均平化を試しましたが、容易に圃場内の土を移動できるのは代かきになります。

まずは、代かき前にドローンでDSMを計測し、凹凸マップを作成します。

代かき前の凹凸マップ(2017年)

高い(淡いピンク) ← 地表面の高さ → 低い(紺)

圃場の西(左)の中側が高くなっています。また、圃場の3辺の低い部分はくろつけを行った際のトラクターの車輪跡になります。

屋上から撮影した圃場(画像の上が北)

凹凸マップが示すように地表面がちょっとでも高いところ(数cmの差)は、水が溜まっていないことがわかります。

水が全体的に入ったら、代かきを行います。

圃場の凹凸を意識しながら、トラクターによる均平化

均平化後には、ドローンによる計測を実施します。

ポールカメラによる凹凸計測

Posted on Updated on

日本の農地上空には、送電線が多く存在しています。残念ながら、私の圃場上空にも送電線があります。

送電線の下にある圃場(紫線)

背景画像:地理院地図

そのため、送電線がある圃場では、安全面を考慮するとドローンによる水稲モニタリングを実施できません。上空からモニタリングできるツールは、ドローン以外にも高所作業車による撮影などがあります(サタケ:圃場生育診断システム「アグリビュー」)。ただ、零細農家にとってモニタリングのたびに高所作業車をレンタルすることはできません。

そこで、今回はポールカメラ方式を採用しました。

ポールカメラは中田ほか(2009)を参考にして、測量スタッフ(約7m)とRicho GR(インターバル間隔を5秒)を用意し、撮影を行います。

 

ポールカメラ撮影のイメージ(場所は圃場ではありませんが…)

 

7mのスタッフに約250gのカメラを取り付けると、スタッフはしなってしまい、上手く扱うには力が必要になります。また、風が吹くと測量スタッフがもっていかれてしまい、同じ場所にとどめるだけでも大変です…。

ポールカメラで撮影するためにはノウハウも必要ですが、改正航空法で飛行制限があるDID地区付近でもモニタリングできるので、ポールカメラは有効なツールだと思います。また、ポールカメラは墜落の心配もありません。

 

青い四角はポールカメラの撮影推定位置

ポールカメラによる3Dモデル(送電線下の圃場)

中田 高,渡辺満久,隈元 崇,後藤秀昭,西谷義数,桜井元康,川口 雄作:地形調査のための簡易高位置撮影装置 (Hi-View)の開発,活断層研究,31,pp.39-43,2009.